Documentation

PDE.Basics.Heat.HeatSolutionProperty

Properties of the Heat Fundamental Solution, Solution to the Initial Value Problem #

This file establishes key qualitative properties of the solution formula to the heat equation, involving the convolution of the heat kernel and the initial condition g

Main Results #

Key Lemmas #

Reference #

This formalization follows Chapter 7.2.3, "Partial Differential Equations, A First Course" by Professor Rustom Choksi.

Symmetry and Mass Properties #

theorem Heat.heatKernel_even {α t : } (z : ) :
heatKernel α (-z) t = heatKernel α z t

The heat kernel is an even function in its spatial argument.

theorem Heat.heatKernel_mass_one_x_sub_y_even {α t : } (x : ) ( : 0 < α) (ht : 0 < t) :
(y : ), heatKernel α (x - y) t = 1

Translation Invariance: The heat kernel integrates to 1 regardless of translation. -

The Maximum Principle #

noncomputable def Heat.Lmul :

The Maximum Principle for the Heat Equation

If the initial data g satisfies |g(y)| ≤ B for all y, then the solution at any later time and position also satisfies |u(x,t)| ≤ B.

This fundamental property expresses the fact that the heat equation is a diffusion process that redistributes heat but does not create new temperature extrema. The maximum and minimum temperatures can only decrease over time. -

Equations
Instances For
    theorem Heat.heat_maximum_principle {g : } (x : ) {α t B : } ( : 0 < α) (ht : 0 < t) (hg_meas : MeasureTheory.AEStronglyMeasurable g MeasureTheory.volume) (hBound : ∀ (y : ), |g y| B) :

    Gaussian Tail Analysis #

    This section contains technical lemmas for analyzing the decay of Gaussian tail integrals, which are needed to prove that the solution converges to the initial data as t → 0⁺.

    theorem Heat.heatTail_changeOfVariables {α x δ t : } ( : 0 < α) (ht : 0 < t) :
    (y : ), {y : | δ |y - x|}.indicator (fun (y : ) => heatKernel α (x - y) t) y = 1 / Real.pi * (z : ), {z : | δ / (4 * α * t) |z|}.indicator (fun (z : ) => Real.exp (-z ^ 2)) z

    Change of variables formula for heat kernel tail integrals.

    Transforms the integral ∫_{|y-x| ≥ δ} Φ(x-y,t) dy into a standard Gaussian tail integral via the substitution z = (x-y)/√(4αt).

    def Heat.IsBoundedAbs (g : ) :
    Equations
    Instances For

      Integrability of z² exp(-z²). Used in Gaussian tail bounds.

      theorem Heat.far_measurable (δ x : ) :

      The "far" region {y : |y - x| ≥ δ} is measurable.

      theorem Heat.integral_split_near_far {α x t : } (g : ) (far : Set ) ( : 0 < α) (ht : 0 < t) (hg : MeasureTheory.Integrable g MeasureTheory.volume) (h_meas_far : MeasurableSet far) :
      (y : ), heatKernel α (x - y) t * (g y - g x) = ( (y : ) in far, heatKernel α (x - y) t * (g y - g x)) + (y : ) in far, heatKernel α (x - y) t * (g y - g x)

      Helper lemma for splitting integrals into near and far regions.

      theorem Heat.integral_indicator_tail_even {f : } {R : } (hR : 0 < R) (heven : ∀ (x : ), f (-x) = f x) (hint : MeasureTheory.IntegrableOn f (Set.Ici R) MeasureTheory.volume) :
      (z : ), {z : | R |z|}.indicator f z = 2 * (z : ) in Set.Ici R, f z

      For even functions, the two-sided tail integral equals twice the one-sided integral.

      Evaluation of ∫₀^∞ z exp(-z²) dz = 1/2.

      theorem Heat.gaussian_tail_bound_by_weighted {R : } (hR : 0 < R) :
      (z : ) in Set.Ici R, Real.exp (-z ^ 2) 1 / R * (z : ) in Set.Ici 0, z * Real.exp (-z ^ 2)

      Key Gaussian tail bound:

      This is the analytical estimate that allows us to bound Gaussian tail integrals and prove convergence as t → 0.

      Convergence to Initial Data #

      This section proves that the solution u(x,t) → g(x) as t → 0⁺, establishing that the convolution formula satisfies the initial condition.

      theorem Heat.heatKernel_IVP_limit_textbook {α : } (g : ) (x : ) ( : 0 < α) (g_bounded : IsBoundedAbs g) (g_cont : Continuous g) (g_int : MeasureTheory.Integrable g MeasureTheory.volume) :
      Filter.Tendsto (fun (t : ) => heatConvolutionHK α g x t) (nhdsWithin 0 (Set.Ioi 0)) (nhds (g x))

      Main Theorem: The solution converges to the initial data as t → 0⁺

      Given bounded, continuous, integrable initial data g, the solution u(x,t) = ∫ Φ(x-y,t) g(y) dy converges to g(x) as t → 0⁺.

      Proof Strategy #

      The proof follows the textbook approach:

      1. Rewrite using mass-one property: |u(x,t) - g(x)| = |∫ Φ(x-y,t)[g(y) - g(x)] dy|

      2. Split into near and far regions: Choose δ > 0 from continuity of g at x.

        • Near: |y-x| < δ where |g(y) - g(x)| < ε/2
        • Far: |y-x| ≥ δ where we use boundedness
      3. Estimate near integral: ∫{near} Φ |g(y) - g(x)| dy ≤ (ε/2) ∫{near} Φ dy ≤ ε/2

      4. Estimate far integral using Gaussian tail bounds: ∫{far} Φ |g(y) - g(x)| dy ≤ 2B ∫{far} Φ dy ≤ C√t

      5. Choose t small enough: For t < δ₀, have C√t < ε/2, giving total < ε.